Trisect a Line Segment (5)

Method:

- 1) Construct a segment AB
- 2) Draw an arbitrary segment AI on point A but not-coincident with AB
- 3) Take an arbitrary point C on segment AI
- 4) Construct segment AC, then segment AD on segment AI such that AC = CD
- 5) Construct segment BJ on point B that is parallel to segment AI
- 6) Construct segments BE and EF on segment BJ such that BE = EF = AC = CD
- 7) Connect points C and F and call it segment CF
- 8) Connect points D and E and call it segment DE
- 9) Segments CF and DE intersects segment AB at G and H respectively.

Claim: Points G and H trisects segment AB.

Proof:

Consider $\triangle ACG$ and $\triangle ADH$,

$\angle CAG = \angle DAH$	(Same angles)
AC = CD	(By construction)
$\angle ACG = \angle ADH$	(CF and DE are transversals to parallel lines AI and BJ)

So, $\triangle ACG$ and $\triangle ADH$ are similar triangles.

Since, AC = CD, hence AG = GH

By similar argument we can show that ΔBEH and ΔBGF are similar triangles. Hence, BH = HG (as BE = EF)

Now for, $\triangle ACG$ and $\triangle BEH$

- $\angle A = \angle B$ (AB is transversal to parallel lines AI and BJ)
- AC = BE (by construction)
- $\angle ACG = \angle BEH$ (CF and DE are transversals to parallel lines AI and BJ)

Hence, $\triangle ACG = \triangle BEH$ (A-A-S rule). So, AG = BH

Putting it all together, we have AG = GH = BH

Hence points G and H trisects segment AB.

